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ASYMPTOTICALLY ROBUST DETECTION OF STOCHASTIC

SIGNALS IN CONTAMINATED NOISE

M.S. SCHNITZER and D.R. HALVERSON

Department ot Electrical Engineering

Tex.qm A&M University

College Station, Texas 77843

ABSTRACT

We consider the di.crete time detection of stochastic

signals in white noise, where the univariate noise density

is known perfectly only on an interval about the origin.

We present a method to enhance the asymptotic performance

-. of the detector by exploiting this knowledge, and at the

same time preserve robustness properties of the detector

to the remaining inexact knowledge of the univariate noise

density via a saddlepoint condition. We then provide

examples to show that improved performance is indeed

obtained.

I. INTRODUCTION

Consider the discrete time detection of stochastic

signals in independent and identically distributed noise.

If the underlying statistical distributions are completely

known, then selection of a Neyman-Pearson optimal detector

is possible. However, in many cases knowledge of the

univariate noise density is imperfect, particularly for

extreme values of its argument. In such situations the

employment of a detector which is robust to the inexact

statistical knowledge may be desirable. Earlier work of

Kassam and Thomas [lj and Poor, Mami, and Thomas 121 points

toward the introduction of limiting for observations of

large magnitude in order to iupart robustness into the

detection scheme. In particular, [21 considers the
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asymptotically robust detection of stochastic: signals in

imperfectly known noise.

In this paper we consider further applications of

detectors possessing the same property of limiting. We note

that often more is known about the univariate noise density

near the origin than on the tails, and such knowledge has

the potential to be exploited for improved performance. In

some earlier work [3] we show how to design the robust

detector by exploiting this knowledge for improved performance

over the detector of [1]; this work is applicable to the case

of a time varying deterministic signal embedded in imperfectly

known noise. We now consider the analogous extension of [3]

for improved performance over the detector of [2]. Our results

illustrate how such improved performance can be obtained and

still preserve the robustness of the detector to the remaining

inexact knowledge of the univariate noise density through the

employment of limiting.

1I. DEVELOPMENT

Suppose we denote the i.i.d. discrete time noise process

by fNi;i=1,2, .... , with f(.) denoting the associated

univariate noise density, and let the stochastic signal be

denoted by fSi;i=l,2,... ; the zero mean independent

signal process is assumed to be independent of the noise. The

detection problem then reduces to a choice between

Ho : Y Nt  ; i I , 2 , n

H Y =N +  eS i = 1, 2, ... ,n

' where we observe realizations yi of the random variables Yi"

As in 11-3], we assume the noise density f(.) is a member of

iethc uber-Tukey mixture class, i.e. f(.) can be expressed as

where L is a fixed known number

between zero and unity, fo( . ) is a known symmetric nominal

density, and h(') is an unknown "contaminating" density. In

;iddition, however, we assume that f( is k ,. 4,1 . T ~fWM:EkRCTI(AFSC)
,- ,: ,, iTT.kL T 0 D TI C
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interval [-a, al. i.e. h(x) - f (x) lor all x in [-a, al. We0

note in passing that a similar assumption is employed in [2]

%without being directly exploited. Motivated by the results of

11-3], as well as the form of the locally optimal detector

given by [21, we employ the class of detectors where a test

statistic of form

n

Tg(y) = LRES2i g(y.) is compared to a threshold, with the

nonl inearity

(C' (x)/f (x) if jx :k
g() given by g(x) 0 0

if" (k)/f 0 (k) otherwise
0

We thus see that specifying k effectively specifies the

detector.

in order to analyze and compare the performance of the

detector, and hence determine k for best performance, an

asymptotic fidelity criterion is employed. Because of its

relationship to the Pitman-Noether theorem [4], the criterion

of Asymptotic Relative Efficiency (ARE) is particularly useful;

the associated efficacy functional n provides a convenient

measure of performance, where 11 is defined by Accesion For

C[ NTIS CRA&I
g.) ]2L i IC TAB

S"(x) f(x) dx U a.,ioj:ced 5
rl( k ,h ) 00 w i t h J .J..tifiCdt -. I

) 2 
B y ................

. g2(x) f(x) dx Dietibution1
,A Availability Codes

n1 2 : Avail and Ior

j 21A Oit Specialt'm i . S As
c = lrnm

in other work which employs the ARE, the results of this paper

are valid only when various mild regularity conditions are

imposed on the underlying statistical distributions. These

assumptions are imposed to guarantee that our expressions 4

exist and, when necessary, are nonzero; additionally,

Ie --ej z J52
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re%,ulIa rit v as sunip L itins a re requ i red to i n sure t ht- relievancy of

thle vfficacv functional to the ARE via satisfaction of the

hypothecsis of the P1itman-Noether theorem 141. i n thi s pa per,

our results are presented under the tacit assumption of these

numerous though obvious mild conditions. We refer the
interested reader to 15-71, in which analogous assumptions are

explicitly listed, it should be noted that we do not impose

symmetry assumptions onl the contaminating density h(-).

To preserve the robustness property of the deLector, k is

then chosen according to sup inf rdk,h), where dependence of r
k h

on k and h(-) is indicated. Such a choice of k will be called

an optimal choice. Thle following result provides Insight into

how to obtain an optimal choice of k:

Theorem: Let

K = k>O: if k 'a then lg(.)I and jg'(.)j are weakly monotoneton

la,kj} Then a necessary and sufficient condition for k to

be an optimal choice over K is that k yield the supremum among

a k 2
2 c[} g(x)f (x)dx +(l-c) J g(X)f (x)dx1

(a) iti rn(k,h)- a ___

h

a a

L f g2( )-g2 k)) o~x~ x + I-c (g 2(x)-g 2(k))f0 (x)dx +g 2(k)

J 0

it k~

Proof: Consider first the proof for part (a). Note that by

negative scaling when necessary we can assume without loss of
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generality that g'(.) is weakly increasing on Ia,kJ, i.e.

g" x) !0 on [a,k]. Moreover, by symmetry we also have

g"(x) Oon [-k,-aI. In a manner similar to the proof of the

Theorem of (31 we obtain by direct evaluation

(k h) =

of k
2 g"(x) f0 (x)dx +(1-.) x)f(x)d g"(x)h(x)dx

a a a

2 J (g 2 (x)-g2(k))fo(x)dx +2(0-) (g 2 (x)-g 2 (k))f0 (x)dx

0a

+g2(k) + j (g (x)-g2(k))h(x)dx + (g2(x)-g2(k))h(x)d

Noting the weak monotonicitylof Ig(.)I implies that g 2 (.) is

weaklv increasing, we observe that the numerator of the above

is minimized while the denominator is simultaneously maximized

if h(x)=O on Ik, -a] u ia,kl. The expression given for

inf rI(k,h) in part (a) then follows directly." h

For part (b) a similar evaluation when k.a yields

C 2 g"(x)f (x)dx 2

.' 0. rl(k ,h)= _ __ _ _

[,f g 2 (x)fo(x)dx +2(1-r)g 2 (k) fo(x)dx

L0

I* -k
+ cg2(k) h(x)dx + h(x)dx

-V-,

%%.
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Noting that f h(x)dx + [ h(x)dx= 1-2 J f0(x)dx,

k 0

we obtain an expression for n(kh) which is independent of

h(.) and which agrees with the expression given for inf r(k,h)

in part (b). QED

We remark that differentiation of the expressions of the

Theorem could be employed as in [3] for the purpose of

obtaining a condition on an optimal choice k as a solution

of a nonlinear equation. However, we have found that for

this stochastic signal situation the appropriate equations

are typically so complicated that it is no more difficult

to search directly over the inf n(k,h) values. We also
h

remark that the techniques of [31 could be employed to extend

the Theorem to the case of an asymmetric nominal density; the
'., chief cost for such an extension would be the considerably

more cumbersome expressions for the inf q(k,h) quantity.

We now consider an example which employs a zero mean

unit variance sech noise nominal density, i.e.

Sfo (x)= '2 sech( rx) for all x.

Wt -orpare the "worst case" efficacy n2 w of the detector

of 12] (i.e. the minimal efficacy over those h(.) satisfying

our constraints as well as those of 12]) with the "worst case"

efficacy ilw of our detector with k chosen via the Theorem.

The results, which depend on the choice of a and L, are

tabulated below:



UQ -7-

'a b c: Values of W

,% =0. I -=0. 3 =0. , =0. 7

,, ,a 2 0 O0 6.02 2 . 6.5 1 . 44 1 . 13a=l.50 6.02 2.65 1.44 1.13

Sa= 1.00 3. 45 2. 73 1 .44 1 .1 3

= 0 2. 73 1. 55 1 . 15 1 .04

Note that the most dramatic improvement in p t2rformance

.I occurs when the greatest certainty is present concerning the

univariate noise density (small L and large a). This is

% probably consistent with what we might expect, however it is

also directly opposite to what was observed for the (;aussian

example of [3] for the time varying deterministic signal case.

Other such opposing effects are known to exist when comparing

the stochastic and deterministic signal cases, e.g. respective

symmetry and skew symmetry of the nonlinearitv g(.), and thus

the results illustrated here need not be viewed as surprising

when compared to those of [3).

Ill. CONCLUSION

We have introduced ;an approach toward improving the

asymptotic performanct of a detector of a stochastic signal

by exploiting available knowledge of the univariate noise

density near the origin, while at the same time retaining the

robustness of the detector to inexact knowledge of the tails

of the noise density. We have shown by way o example that

* a .'suchi improved "worst case" performance does i ai]ceLd occur.
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